

2019 구조물 내진설계 경진대회

한국해양대학교 해양공간건축학부 건축방재전공 Team. 지방시

지진을 방지하는 시대

목차

- 01. 규정 분석
- 02. 구조물 설계
- 03. 구조물 평가

송화철 교수 해양공간건축학부 교수 자문위원 **윤근석** 팀장 해양공간건축학부 14 경제성, 시공성 검토 구조 계산

고규완 팀원 해양공간건축학부 15 MIDAS 설계 및 모델링 공정표 내역서 작성 김하은 팀원 해양공간건축학부 17 구조분석 및 실험 PPT 제작 **여지현** 팀원 해양공간건축학부 17 구조해석 및 설계 지진파 분석

01.

규정분석

01 규정분석

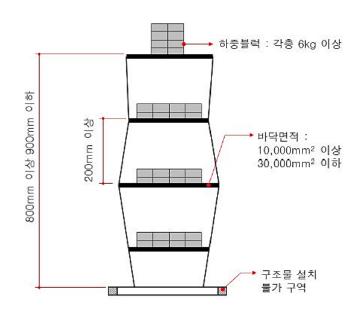
02 구조물 설계

03 구조물 평가

성능 목표

- 1. 구조물의 지진 시 거동 예측 및 부재 강도 평가
- 2. 500년 재현 주기 지진발생 시 기능수행
- 3. 즉시 복구/장기 복구/인명 보호
- 4. 2400년 재현 주기 지진에 대한 붕괴 방지 수준 만족
- 5. 시공성과 경제성을 고려하고 구조물의 아름다움 설계

작품 제작 규정


√ 경제성 예산

만점 < 1200백만원< 차등적 점수부여< 2400백만원

√ 시공성 제작시간

총 5시간 초과 불가

√ 안전성

경제성과 시공성을 고려한 합리적 구조 형태 선정 필요

지진파 분석

지진파 분석

지반 종류 : S2, 얕고 단단한 지반

지진 구역: I

지진구역 계수(Z): 0.11g

지진파 분석

최대 가속도 0.2g에서 최대1.2g 가진

지진파 해석을 통하여 특급 내진 설계 제작

02.

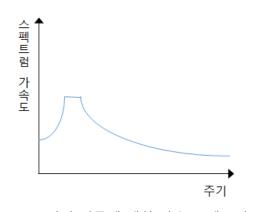
구조물 설계

01 규정분석

02 구조물 설계

03 구조물 평가

내진 • 제진 • 면진


성능 ∝ 비용 성능과 비용은 비례

경제성

결론

- 1. 경제성을 고려하며 최대의 성능을 요구
- 2. 구조물에 사용되는 재료가 MDF 목재이므로 주어진 재료로는 면진 설계가 부적절하다고 판단

[표] 지진 기록에 대한 반응 스펙트럼위 그래프를 보아 주기가 길어지면가속도가 줄어든다는 결과를 볼 수 있다.

- **내진** : 건물의 강성으로 지진력에 저항하는 시스템

- 제진 : 댐퍼 등 구조물로 지진력을 감쇠시키는 시스템
- 면진 : 지진력이 건물에 전달되지 않도록 하는 시스템

내진+제진

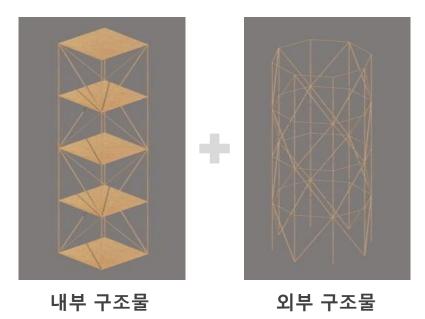
외부 설계 요소 부재를 강하게 설계

- 1. 장 주기의 내부 구조물의 변위를 제어한다.
- 2. 충분한 단 주기를 가진다.
- 3. 높은 강성으로 지진력에 파괴되지 않게 한다.

내부 설계 요소 부재를 유하게 설계

- 1. 충분한 장 주기를 가진다.
- 2. 댐퍼를 통해 에너지를 흡수한다.
- 3. 가새, 트러스를 이용하여 내진 설계를 보강한다.

구조물 구상 I 하중


외부 골조(강 요소)	내부 골조(유 요소)				
- 단 주기 구조체	- 장 주기 구조체				
- 높은 강성	- 낮은 강성				
- 작은 횡 변위	- 큰 횡 변위				
- 수평력에 저항 (하중분담효과)	- 수직력에 저항 (하중분담효과)				

수평 하중을 담당하는 외부 구조물 수직 하중을 담당하는 내부 구조물

이중 구조물

구조물 구상 표 형태

- 세장비를 줄이기 위해 바닥 면적을 최대 로 이용한다.
- 외부는 정 팔각형으로 구조성을 높인다.
- 내부는 정 사각형으로 시공성을 높인다.
- 외부 구조물과 내부 구조물은 면 줄로 연결하여 내부 구조물이 제진 역할을 하게 한다.

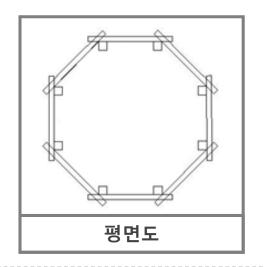
01 규정분석

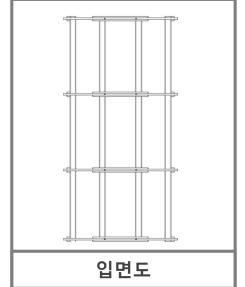
02.

구조물 설계

- 02 구조물 설계
- 03 구조물 평가

외부 구조물의 단면 산정

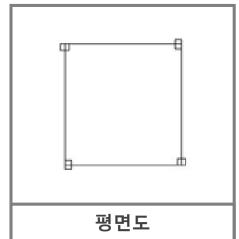

02.


01 규정분석

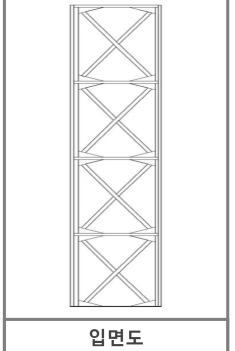
02 구조물 설계

03 구조물 평가

구조물 설계


• 단면: 75mm의 정 팔각형

• 층수 : 3층


• 기둥 수 : 8개

• 기둥 단면: 10mm x 10mm

내부 구조물의 단면 산정

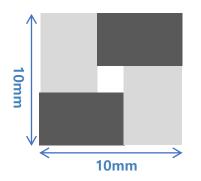
· 단면: 110mm의 정 사각형

• 층수 : 4층

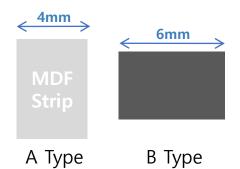
• 기둥 수 : 4개

•기둥 단면: 6mm x 8mm

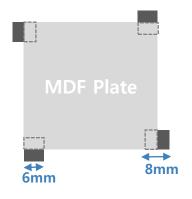
02.


구조물 설계

01 규정분석

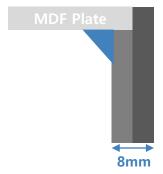

02 구조물 설계

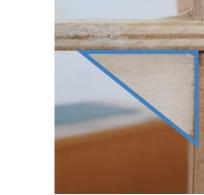
03 구조물 평가


외부 구조물의 기둥

X축과 Y축의 단면 2차 모멘트가 같아 안정적인 **10mm x 10mm** 형태 채택

내부 구조물의 기둥 기둥의 개수를 줄여 경제성을 확보하기 위해 기둥을 둘러 배치




외부/내부 기둥을 면 줄로 연결 제진 역할

자투리 재료를 강접 재료로 활용 구조성 + 경제성 확보

Truss 보강

물성치 실험 (MIDAS해석에서 사용할 E값)

02. 구조물 설계

- 캔틸레버 보 변위식 $\delta = \frac{PL^3}{3EI}$
- 5회 평균 *E* = 2361.7MPa

P (N)	L (mm)	I (mm4)	δ (mm)	E (Mpa)
9.8	120	72	33	2375.76
9.8	120	72	35	2240.00
9.8	120	72	31	2529.03
9.8	120	72	33	2375.76
9.8	120	72	34	2305.89

[표] 물성치 실험 5회 결과값

01 규정분석

02 구조물 설계

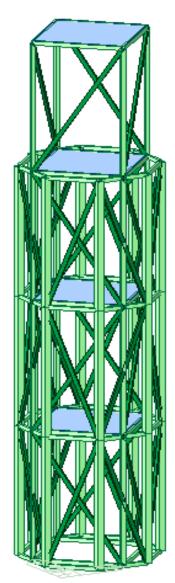
03 구조물 평가

시공성 평가를 위한 모형 제작

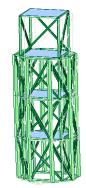
내부 구조물

외부 구조물

최종 구조물


최종형태

03.구조물 평가


01 규정분석

02 구조물 설계

03 구조물 평가

1차 모드 주기(s): 0.9701

2차 모드 주기(s)0.9635

3차 모드 주기(s):0.8231

전체적인 건물 거동

이중 구조물을 이용한 수직 수평 하중 분산

최대 가속도 1.2g까지 버티는 내진설계

	Frequency	Period
Mode No	(cycle/sec)	(sec)
1	1.0308	0.9701
2	1.0379	0.9635
3	1.2149	0.8231

공정표

03.구조물 평가

01 규정분석

02 구조물 설계

03 구조물 평가

	소 요			시 간									
구 분		1 시 간				2 시 간							
		10분	20분	30분	40분	50분	60분	10분	20분	30분	40분	50분	60분
내 부 구조물	기둥												
	슬라브												
	댐퍼, 트러스												
외 부 구조물	기둥												
	보												
	트러스												
구조물 결합													
하중 설치													

종류	부재명		개수	단가(백만원)	비용(백만원)	합계(백만원)		
MDF Plate	기초판		1	-	-	-		
	내부구조물	기둥	11		110			
MDF	네누구끄 ²	가새	6	10	60	570		
Strip	외부구조물	팔각가새	8	10	80	370		
	지수수조물	기둥	32		320			
MDF	MDF	슬리브	4	100	400	400		
Plate ^L	내부구조물	강접	남은 것	100	400	400		
면줄	보강, 접합		5	10	50	50		
접착제	접착제		2	200	400	400		
총계	1420백만원							